home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
EnigmA Amiga Run 1997 May
/
EnigmA AMIGA RUN 18 (1997)(G.R. Edizioni)(IT)[!][issue 1997-05][EAR-CD II].iso
/
ghost
/
gs403src_gs.lha
/
gs4.03
/
gdevsvga.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-18
|
25KB
|
911 lines
/* Copyright (C) 1991, 1995, 1996 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* gdevsvga.c */
/* SuperVGA display drivers */
#include "memory_.h"
#include "gconfigv.h" /* for USE_ASM */
#include "gx.h"
#include "gserrors.h"
#include "gxarith.h" /* for ...log2 */
#include "gxdevice.h"
#include "gdevpccm.h"
#include "gdevpcfb.h"
#include "gdevsvga.h"
#include "gsparam.h"
/* The color map for dynamically assignable colors. */
#define first_dc_index 64
private int next_dc_index;
#define dc_hash_size 293 /* prime, >num_dc */
typedef struct { ushort rgb, index; } dc_entry;
private dc_entry dynamic_colors[dc_hash_size + 1];
#define num_colors 255
/* Macro for casting gx_device argument */
#define fb_dev ((gx_device_svga *)dev)
/* Procedure records */
#define svga_procs(open) {\
open, NULL /*get_initial_matrix*/,\
NULL /*sync_output*/, NULL /*output_page*/, svga_close,\
svga_map_rgb_color, svga_map_color_rgb,\
svga_fill_rectangle, NULL /*tile_rectangle*/,\
svga_copy_mono, svga_copy_color, NULL /*draw_line*/,\
svga_get_bits, NULL /*get_params*/, svga_put_params,\
NULL /*map_cmyk_color*/, NULL /*get_xfont_procs*/,\
NULL /*get_xfont_device*/, NULL /*map_rgb_alpha_color*/,\
NULL /*get_page_device*/, svga_get_alpha_bits, svga_copy_alpha\
}
/* Save the controller mode */
private int svga_save_mode = -1;
/* ------ Internal routines ------ */
#define regen 0xa000
/* Construct a pointer for writing a pixel. */
/* Assume 64K pages, 64K granularity. */
/* We know that y is within bounds. */
#define set_pixel_ptr(ptr, fbdev, x, y, wnum)\
{ ulong index = (ulong)(y) * fbdev->raster + (uint)(x);\
if ( (uint)(index >> 16) != fbdev->current_page )\
{ (*fbdev->set_page)(fbdev, (fbdev->current_page = index >> 16), wnum);\
}\
ptr = (fb_ptr)MK_PTR(regen, (ushort)index);\
}
#define set_pixel_write_ptr(ptr, fbdev, x, y)\
set_pixel_ptr(ptr, fbdev, x, y, fbdev->wnum_write)
#define set_pixel_read_ptr(ptr, fbdev, x, y)\
set_pixel_ptr(ptr, fbdev, x, y, fbdev->wnum_read)
/* Find the graphics mode for a desired width and height. */
/* Set the mode in the device structure and return 0, */
/* or return an error code. */
int
svga_find_mode(gx_device *dev, const mode_info _ds *mip)
{ for ( ; ; mip++ )
{ if ( mip->width >= fb_dev->width &&
mip->height >= fb_dev->height ||
mip[1].mode < 0
)
{ fb_dev->mode = mip;
gx_device_adjust_resolution(dev, mip->width, mip->height, 1);
fb_dev->raster = fb_dev->width;
return 0;
}
}
return_error(gs_error_rangecheck);
}
/* Set the index for writing into the color DAC. */
#define svga_dac_set_write_index(i) outportb(0x3c8, i)
/* Write 6-bit R,G,B values into the color DAC. */
#define svga_dac_write(r, g, b)\
(outportb(0x3c9, r), outportb(0x3c9, g), outportb(0x3c9, b))
/* ------ Common procedures ------ */
#define cv_bits(v,n) (v >> (gx_color_value_bits - n))
/* Initialize the dynamic color table, if any. */
void
svga_init_colors(gx_device *dev)
{ if ( fb_dev->fixed_colors )
next_dc_index = num_colors;
else
{ memset(dynamic_colors, 0,
(dc_hash_size + 1) * sizeof(dc_entry));
next_dc_index = first_dc_index;
}
}
/* Load the color DAC with the predefined colors. */
private void
svga_load_colors(gx_device *dev)
{ int ci;
svga_dac_set_write_index(0);
if ( fb_dev->fixed_colors )
for ( ci = 0; ci < num_colors; ci++ )
{ gx_color_value rgb[3];
pc_8bit_map_color_rgb(dev, (gx_color_index)ci, rgb);
svga_dac_write(cv_bits(rgb[0], 6), cv_bits(rgb[1], 6),
cv_bits(rgb[2], 6));
}
else
for ( ci = 0; ci < 64; ci++ )
{ static const byte c2[10] =
{ 0, 42, 0, 0, 0, 0, 0, 0, 21, 63 };
svga_dac_write(c2[(ci >> 2) & 9], c2[(ci >> 1) & 9],
c2[ci & 9]);
}
}
/* Initialize the device structure and the DACs. */
int
svga_open(gx_device *dev)
{ fb_dev->x_pixels_per_inch =
fb_dev->y_pixels_per_inch =
fb_dev->height / PAGE_HEIGHT_INCHES;
/* Set the display mode. */
if ( svga_save_mode < 0 )
svga_save_mode = (*fb_dev->get_mode)();
(*fb_dev->set_mode)(fb_dev->mode->mode);
svga_init_colors(dev);
svga_load_colors(dev);
fb_dev->current_page = -1;
return 0;
}
/* Close the device; reinitialize the display for text mode. */
int
svga_close(gx_device *dev)
{ if ( svga_save_mode >= 0 )
(*fb_dev->set_mode)(svga_save_mode);
svga_save_mode = -1;
return 0;
}
/* Map a r-g-b color to a palette index. */
/* The first 64 entries of the color map are set */
/* for compatibility with the older display modes: */
/* these are indexed as 0.0.R0.G0.B0.R1.G1.B1. */
gx_color_index
svga_map_rgb_color(gx_device *dev, gx_color_value r, gx_color_value g,
gx_color_value b)
{ ushort rgb;
if ( fb_dev->fixed_colors )
{ gx_color_index ci = pc_8bit_map_rgb_color(dev, r, g, b);
/* Here is where we should permute the index to match */
/* the old color map... but we don't yet. */
return ci;
}
{ ushort r5 = cv_bits(r, 5), g5 = cv_bits(g, 5),
b5 = cv_bits(b, 5);
static const byte cube_bits[32] =
{ 0, 128, 128, 128, 128, 128, 128, 128, 128, 128,
8, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
1, 128, 128, 128, 128, 128, 128, 128, 128, 128,
9
};
uint cx = ((uint)cube_bits[r5] << 2) +
((uint)cube_bits[g5] << 1) +
(uint)cube_bits[b5];
/* Check for a color on the cube. */
if ( cx < 64 ) return (gx_color_index)cx;
/* Not on the cube, check the dynamic color table. */
rgb = (r5 << 10) + (g5 << 5) + b5;
}
{ register dc_entry _ds *pdc;
for ( pdc = &dynamic_colors[rgb % dc_hash_size];
pdc->rgb != 0; pdc++
)
if ( pdc->rgb == rgb )
return (gx_color_index)(pdc->index);
if ( pdc == &dynamic_colors[dc_hash_size] )
{ /* Wraparound */
for ( pdc = &dynamic_colors[0]; pdc->rgb != 0; pdc++ )
if ( pdc->rgb == rgb )
return (gx_color_index)(pdc->index);
}
if ( next_dc_index == num_colors )
{ /* No space left, report failure. */
return gx_no_color_index;
}
/* Not on the cube, and not in the dynamic table. */
/* Put in the dynamic table if space available. */
{ int i = next_dc_index++;
pdc->rgb = rgb;
pdc->index = i;
svga_dac_set_write_index(i);
svga_dac_write(cv_bits(r, 6), cv_bits(g, 6),
cv_bits(b, 6));
return (gx_color_index)i;
}
}
}
/* Map a color code to r-g-b. */
/* This routine must invert the transformation of the one above. */
/* Since this is practically never used, we just read the DAC. */
int
svga_map_color_rgb(gx_device *dev, gx_color_index color,
gx_color_value prgb[3])
{ uint cval;
outportb(0x3c7, (byte)color);
#define dacin() (cval = inportb(0x3c9) >> 1,\
((cval << 11) + (cval << 6) + (cval << 1) + (cval >> 4)) >>\
(16 - gx_color_value_bits))
prgb[0] = dacin();
prgb[1] = dacin();
prgb[2] = dacin();
#undef dacin
return 0;
}
/* Fill a rectangle. */
int
svga_fill_rectangle(gx_device *dev, int x, int y, int w, int h,
gx_color_index color)
{ uint raster = fb_dev->raster;
ushort limit = (ushort)-raster;
int yi;
fb_ptr ptr;
fit_fill(dev, x, y, w, h);
set_pixel_write_ptr(ptr, fb_dev, x, y);
/* Most fills are very small and don't cross a page boundary. */
yi = h;
switch ( w )
{
case 0: return 0; /* no-op */
case 1:
while ( --yi >= 0 && PTR_OFF(ptr) < limit )
ptr[0] = (byte)color,
ptr += raster;
if ( !++yi ) return 0;
break;
case 2:
while ( --yi >= 0 && PTR_OFF(ptr) < limit )
ptr[0] = ptr[1] = (byte)color,
ptr += raster;
if ( !++yi ) return 0;
break;
case 3:
while ( --yi >= 0 && PTR_OFF(ptr) < limit )
ptr[0] = ptr[1] = ptr[2] = (byte)color,
ptr += raster;
if ( !++yi ) return 0;
break;
case 4:
while ( --yi >= 0 && PTR_OFF(ptr) < limit )
ptr[0] = ptr[1] = ptr[2] = ptr[3] = (byte)color,
ptr += raster;
if ( !++yi ) return 0;
break;
default:
if ( w < 0 ) return 0;
/* Check for erasepage. */
if ( w == dev->width && h == dev->height &&
color < first_dc_index
)
svga_init_colors(dev);
}
while ( --yi >= 0 )
{ if ( PTR_OFF(ptr) < limit )
{ memset(ptr, (byte)color, w);
ptr += raster;
}
else if ( PTR_OFF(ptr) <= (ushort)(-w) )
{ memset(ptr, (byte)color, w);
if ( yi > 0 )
set_pixel_write_ptr(ptr, fb_dev, x, y + h - yi);
}
else
{ uint left = (uint)0x10000 - PTR_OFF(ptr);
memset(ptr, (byte)color, left);
set_pixel_write_ptr(ptr, fb_dev, x + left, y + h - 1 - yi);
memset(ptr, (byte)color, w - left);
ptr += raster - left;
}
}
return 0;
}
/* Copy a monochrome bitmap. The colors are given explicitly. */
/* Color = gx_no_color_index means transparent (no effect on the image). */
int
svga_copy_mono(gx_device *dev,
const byte *base, int sourcex, int sraster, gx_bitmap_id id,
int x, int y, int w, int h, gx_color_index czero, gx_color_index cone)
{ uint raster = fb_dev->raster;
ushort limit;
register int wi;
uint skip;
int yi;
register fb_ptr ptr = (fb_ptr)0;
const byte *srow;
uint invert;
fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
limit = (ushort)-w;
skip = raster - w + 1;
srow = base + (sourcex >> 3);
#define izero (int)czero
#define ione (int)cone
if ( ione == no_color )
{ gx_color_index temp;
if ( izero == no_color ) return 0; /* no-op */
temp = czero;
czero = cone;
cone = temp;
invert = ~0;
}
else
invert = 0;
/* Pre-filling saves us a test in the loop, */
/* and since tiling is uncommon, we come out ahead. */
if ( izero != no_color )
svga_fill_rectangle(dev, x, y, w, h, czero);
for ( yi = 0; yi < h; yi++ )
{ const byte *sptr = srow;
uint bits;
int bitno = sourcex & 7;
wi = w;
if ( PTR_OFF(ptr) <= skip )
{ set_pixel_write_ptr(ptr, fb_dev, x, y + yi);
}
else if ( PTR_OFF(ptr) > limit )
{ /* We're crossing a page boundary. */
/* This is extremely rare, so it doesn't matter */
/* how slow it is. */
int xi = (ushort)-PTR_OFF(ptr);
svga_copy_mono(dev, srow, sourcex & 7, sraster,
gx_no_bitmap_id, x, y + yi, xi, 1,
gx_no_color_index, cone);
set_pixel_write_ptr(ptr, fb_dev, x + xi, y + yi);
sptr = srow - (sourcex >> 3) + ((sourcex + xi) >> 3);
bitno = (sourcex + xi) & 7;
wi -= xi;
}
bits = *sptr ^ invert;
switch ( bitno )
{
#define ifbit(msk)\
if ( bits & msk ) *ptr = (byte)ione;\
if ( !--wi ) break; ptr++
case 0:
bit0: ifbit(0x80);
case 1:
ifbit(0x40);
case 2:
ifbit(0x20);
case 3:
ifbit(0x10);
case 4:
ifbit(0x08);
case 5:
ifbit(0x04);
case 6:
ifbit(0x02);
case 7:
ifbit(0x01);
#undef ifbit
bits = *++sptr ^ invert;
goto bit0;
}
ptr += skip;
srow += sraster;
}
#undef izero
#undef ione
return 0;
}
/* Copy a color pixelmap. This is just like a bitmap, */
/* except that each pixel takes 8 bits instead of 1. */
int
svga_copy_color(gx_device *dev,
const byte *base, int sourcex, int sraster, gx_bitmap_id id,
int x, int y, int w, int h)
{ int xi, yi;
int skip;
const byte *sptr;
fb_ptr ptr;
fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
skip = sraster - w;
sptr = base + sourcex;
for ( yi = y; yi - y < h; yi++ )
{ ptr = 0;
for ( xi = x; xi - x < w; xi++ )
{ if ( PTR_OFF(ptr) == 0 )
set_pixel_write_ptr(ptr, fb_dev, xi, yi);
*ptr++ = *sptr++;
}
sptr += skip;
}
return 0;
}
/* Put parameters. */
int
svga_put_params(gx_device *dev, gs_param_list *plist)
{ int ecode = 0;
int code;
int atext = fb_dev->alpha_text, agraphics = fb_dev->alpha_graphics;
const char _ds *param_name;
switch ( code = param_read_int(plist, (param_name = "TextAlphaBits"), &fb_dev->alpha_text) )
{
case 0:
if ( atext == 1 || atext == 2 || atext == 4 )
break;
code = gs_error_rangecheck;
default:
ecode = code;
param_signal_error(plist, param_name, ecode);
case 1:
;
}
switch ( code = param_read_int(plist, (param_name = "GraphicsAlphaBits"), &fb_dev->alpha_graphics) )
{
case 0:
if ( agraphics == 1 || agraphics == 2 || agraphics == 4 )
break;
code = gs_error_rangecheck;
default:
ecode = code;
param_signal_error(plist, param_name, ecode);
case 1:
;
}
if ( (code = ecode) < 0 ||
(code = gx_default_put_params(dev, plist)) < 0
)
{ fb_dev->alpha_text = atext;
fb_dev->alpha_graphics = agraphics;
}
return code;
}
/* Read scan lines back from the frame buffer. */
int
svga_get_bits(gx_device *dev, int y, byte *data, byte **actual_data)
{ uint bytes_per_row = dev->width;
ushort limit = (ushort)-bytes_per_row;
fb_ptr src;
if ( y < 0 || y >= dev->height )
return gs_error_rangecheck;
set_pixel_read_ptr(src, fb_dev, 0, y);
/* The logic here is similar to fill_rectangle. */
if ( PTR_OFF(src) <= limit )
memcpy(data, src, bytes_per_row);
else
{ uint left = (uint)0x10000 - PTR_OFF(src);
memcpy(data, src, left);
set_pixel_read_ptr(src, fb_dev, left, y);
memcpy(data + left, src, bytes_per_row - left);
}
if ( actual_data != 0 )
*actual_data = data;
return 0;
}
/* Get the number of alpha bits. */
private int
svga_get_alpha_bits(gx_device *dev, graphics_object_type type)
{ return (type == go_text ? fb_dev->alpha_text :
fb_dev->alpha_graphics);
}
/* Copy an alpha-map to the screen. */
/* Depth is 1, 2, or 4. */
private int
svga_copy_alpha(gx_device *dev, const byte *base, int sourcex,
int sraster, gx_bitmap_id id, int x, int y, int w, int h,
gx_color_index color, int depth)
{ int xi, yi;
int skip;
const byte *sptr;
byte mask;
int ishift;
/* We fake alpha by interpreting it as saturation, i.e., */
/* alpha = 0 is white, alpha = 1 is the full color. */
byte shades[16];
gx_color_value rgb[3];
int log2_depth = depth >> 1; /* works for 1,2,4 */
int n1 = (1 << depth) - 1;
fit_copy(dev, base, sourcex, sraster, id, x, y, w, h);
shades[0] = (byte)svga_map_rgb_color(dev, gx_max_color_value,
gx_max_color_value,
gx_max_color_value);
shades[n1] = (byte)color;
if ( n1 > 1 )
{ memset(shades + 1, 255, n1 - 1);
svga_map_color_rgb(dev, color, rgb);
}
skip = sraster - ((w * depth) >> 3);
sptr = base + (sourcex >> (3 - log2_depth));
mask = n1;
ishift = (~sourcex & (7 >> log2_depth)) << log2_depth;
for ( yi = y; yi - y < h; yi++ )
{ fb_ptr ptr = 0;
int shift = ishift;
for ( xi = x; xi - x < w; xi++, ptr++ )
{ uint a = (*sptr >> shift) & mask;
if ( PTR_OFF(ptr) == 0 )
set_pixel_write_ptr(ptr, fb_dev, xi, yi);
map: if ( a != 0 )
{ byte ci = shades[a];
if ( ci == 255 )
{ /* Map the color now. */
#define make_shade(v, alpha, n1)\
(gx_max_color_value -\
((ulong)(gx_max_color_value - (v)) * (alpha) / (n1)))
gx_color_value r =
make_shade(rgb[0], a, n1);
gx_color_value g =
make_shade(rgb[1], a, n1);
gx_color_value b =
make_shade(rgb[2], a, n1);
gx_color_index sci =
svga_map_rgb_color(dev, r, g, b);
if ( sci == gx_no_color_index )
{ a += (n1 + 1 - a) >> 1;
goto map;
}
shades[a] = ci = (byte)sci;
}
*ptr = ci;
}
if ( shift == 0 )
shift = 8 - depth, sptr++;
else
shift -= depth;
}
sptr += skip;
}
return 0;
}
/* ------ The VESA device ------ */
private dev_proc_open_device(vesa_open);
private gx_device_procs vesa_procs = svga_procs(vesa_open);
int vesa_get_mode(P0());
void vesa_set_mode(P1(int));
private void vesa_set_page(P3(gx_device_svga *, int, int));
gx_device_svga far_data gs_vesa_device =
svga_device(vesa_procs, "vesa", vesa_get_mode, vesa_set_mode, vesa_set_page);
/* Define the structures for information returned by the BIOS. */
#define bits_include(a, m) !(~(a) & (m))
/* Information about the BIOS capabilities. */
typedef struct {
byte vesa_signature[4]; /* "VESA" */
ushort vesa_version;
char *product_info; /* product name string */
byte capabilities[4]; /* (undefined) */
ushort *mode_list; /* supported video modes, -1 ends */
} vga_bios_info;
/* Information about an individual VESA mode. */
typedef enum {
m_supported = 1,
m_graphics = 0x10
} mode_attribute;
typedef enum {
w_supported = 1,
w_readable = 2,
w_writable = 4
} win_attribute;
typedef struct {
ushort mode_attributes;
byte win_a_attributes;
byte win_b_attributes;
ushort win_granularity;
ushort win_size;
ushort win_a_segment;
ushort win_b_segment;
void (*win_func_ptr)(P2(int, int));
ushort bytes_per_line;
/* Optional information */
ushort x_resolution;
ushort y_resolution;
byte x_char_size;
byte y_char_size;
byte number_of_planes;
byte bits_per_pixel;
byte number_of_banks;
byte memory_model;
byte bank_size;
/* Padding to 256 bytes */
byte _padding[256-29];
} vesa_info;
/* Read the device mode */
int
vesa_get_mode(void)
{ registers regs;
regs.h.ah = 0x4f;
regs.h.al = 0x03;
int86(0x10, ®s, ®s);
return regs.rshort.bx;
}
/* Set the device mode */
void
vesa_set_mode(int mode)
{ registers regs;
regs.h.ah = 0x4f;
regs.h.al = 0x02;
regs.rshort.bx = mode;
int86(0x10, ®s, ®s);
}
/* Read information about a device mode */
private int
vesa_get_info(int mode, vesa_info _ss *info)
{ registers regs;
struct SREGS sregs;
regs.h.ah = 0x4f;
regs.h.al = 0x01;
regs.rshort.cx = mode;
segread(&sregs);
sregs.es = sregs.ss;
regs.rshort.di = PTR_OFF(info);
int86x(0x10, ®s, ®s, &sregs);
#ifdef DEBUG
if ( regs.h.ah == 0 && regs.h.al == 0x4f )
dprintf8("vesa_get_info(%x): ma=%x wa=%x/%x wg=%x ws=%x wseg=%x/%x\n",
mode, info->mode_attributes,
info->win_a_attributes, info->win_b_attributes,
info->win_granularity, info->win_size,
info->win_a_segment, info->win_b_segment);
else
dprintf3("vesa_get_info(%x) failed: ah=%x al=%x\n",
mode, regs.h.ah, regs.h.al);
#endif
return (regs.h.ah == 0 && regs.h.al == 0x4f ? 0 : -1);
}
/* Initialize the graphics mode. */
/* Shared routine to look up a VESA-compatible BIOS mode. */
private int
vesa_find_mode(gx_device *dev, const mode_info _ds *mode_table)
{ /* Select the proper video mode */
vesa_info info;
const mode_info _ds *mip;
for ( mip = mode_table; mip->mode >= 0; mip++ )
{ if ( mip->width >= fb_dev->width &&
mip->height >= fb_dev->height &&
vesa_get_info(mip->mode, &info) >= 0 &&
bits_include(info.mode_attributes,
m_supported | m_graphics) &&
info.win_granularity <= 64 &&
(info.win_granularity & (info.win_granularity - 1)) == 0 &&
info.win_size == 64 &&
bits_include(info.win_a_attributes,
w_supported) &&
info.win_a_segment == regen
)
{ /* Make sure we can both read & write. */
/* Initialize for the default case. */
fb_dev->wnum_read = 0;
fb_dev->wnum_write = 0;
if ( bits_include(info.win_a_attributes,
w_readable | w_writable)
)
break;
else if ( info.win_b_segment == regen &&
bits_include(info.win_b_attributes,
w_supported) &&
bits_include(info.win_a_attributes |
info.win_b_attributes,
w_readable | w_writable)
)
{ /* Two superimposed windows. */
if ( !bits_include(info.win_a_attributes,
w_writable)
)
fb_dev->wnum_write = 1;
else
fb_dev->wnum_read = 1;
}
break;
}
}
if ( mip->mode < 0 )
return_error(gs_error_rangecheck); /* mode not available */
fb_dev->mode = mip;
gx_device_adjust_resolution(dev, mip->width, mip->height, 1);
fb_dev->info.vesa.bios_set_page = info.win_func_ptr;
fb_dev->info.vesa.pn_shift = small_exact_log2(64 / info.win_granularity);
/* Reset the raster per the VESA info. */
fb_dev->raster = info.bytes_per_line;
return 0;
}
private int
vesa_open(gx_device *dev)
{ static const mode_info mode_table[] = {
{ 640, 400, 0x100 },
{ 640, 480, 0x101 },
{ 800, 600, 0x103 },
{ 1024, 768, 0x105 },
{ 1280, 1024, 0x107 },
{ -1, -1, -1 }
};
int code = vesa_find_mode(dev, mode_table);
if ( code < 0 ) return code;
return svga_open(dev);
}
/* Set the current display page. */
private void
vesa_set_page(gx_device_svga *dev, int pn, int wnum)
{
#if USE_ASM
extern void vesa_call_set_page(P3(void (*)(P2(int, int)), int, int));
if ( dev->info.vesa.bios_set_page != NULL )
vesa_call_set_page(dev->info.vesa.bios_set_page, pn << dev->info.vesa.pn_shift, wnum);
else
#endif
{ registers regs;
regs.rshort.dx = pn << dev->info.vesa.pn_shift;
regs.h.ah = 0x4f;
regs.h.al = 5;
regs.rshort.bx = wnum;
int86(0x10, ®s, ®s);
}
}
/* ------ The ATI Wonder device ------ */
private dev_proc_open_device(atiw_open);
private gx_device_procs atiw_procs = svga_procs(atiw_open);
private int atiw_get_mode(P0());
private void atiw_set_mode(P1(int));
private void atiw_set_page(P3(gx_device_svga *, int, int));
gx_device_svga far_data gs_atiw_device =
svga_device(atiw_procs, "atiw", atiw_get_mode, atiw_set_mode, atiw_set_page);
/* Read the device mode */
private int
atiw_get_mode(void)
{ registers regs;
regs.h.ah = 0xf;
int86(0x10, ®s, ®s);
return regs.h.al;
}
/* Set the device mode */
private void
atiw_set_mode(int mode)
{ registers regs;
regs.h.ah = 0;
regs.h.al = mode;
int86(0x10, ®s, ®s);
}
/* Initialize the graphics mode. */
private int
atiw_open(gx_device *dev)
{ /* Select the proper video mode */
{ static const mode_info mode_table[] = {
{ 640, 400, 0x61 },
{ 640, 480, 0x62 },
{ 800, 600, 0x63 },
{ 1024, 768, 0x64 },
{ -1, -1, -1 }
};
int code = svga_find_mode(dev, mode_table);
if ( code < 0 ) return code; /* mode not available */
fb_dev->info.atiw.select_reg = *(int *)MK_PTR(0xc000, 0x10);
return svga_open(dev);
}
}
/* Set the current display page. */
private void
atiw_set_page(gx_device_svga *dev, int pn, int wnum)
{ int select_reg = dev->info.atiw.select_reg;
byte reg;
disable();
outportb(select_reg, 0xb2);
reg = inportb(select_reg + 1);
outportb(select_reg, 0xb2);
outportb(select_reg + 1, (reg & 0xe1) + (pn << 1));
enable();
}
/* ------ The Trident device ------ */
private dev_proc_open_device(tvga_open);
private gx_device_procs tvga_procs = svga_procs(tvga_open);
/* We can use the atiw_get/set_mode procedures. */
private void tvga_set_page(P3(gx_device_svga *, int, int));
gx_device_svga far_data gs_tvga_device =
svga_device(tvga_procs, "tvga", atiw_get_mode, atiw_set_mode, tvga_set_page);
/* Initialize the graphics mode. */
private int
tvga_open(gx_device *dev)
{ fb_dev->wnum_read = 1;
fb_dev->wnum_write = 0;
/* Select the proper video mode */
{ static const mode_info mode_table[] = {
{ 640, 400, 0x5c },
{ 640, 480, 0x5d },
{ 800, 600, 0x5e },
{ 1024, 768, 0x62 },
{ -1, -1, -1 }
};
int code = svga_find_mode(dev, mode_table);
if ( code < 0 ) return code; /* mode not available */
return svga_open(dev);
}
}
/* Set the current display page. */
private void
tvga_set_page(gx_device_svga *dev, int pn, int wnum)
{
/* new mode */
outportb(0x3c4, 0x0b);
inportb(0x3c4);
outportb(0x3c4, 0x0e);
outportb(0x3c5, pn ^ 2);
}
/* ------ The Tseng Labs ET3000/4000 devices ------ */
private dev_proc_open_device(tseng_open);
private gx_device_procs tseng_procs =
svga_procs(tseng_open);
/* We can use the atiw_get/set_mode procedures. */
private void tseng_set_page(P3(gx_device_svga *, int, int));
/* The 256-color Tseng device */
gx_device_svga far_data gs_tseng_device =
svga_device(tseng_procs, "tseng", atiw_get_mode, atiw_set_mode, tseng_set_page);
/* Initialize the graphics mode. */
private int
tseng_open(gx_device *dev)
{ fb_dev->wnum_read = 1;
fb_dev->wnum_write = 0;
/* Select the proper video mode */
{ static const mode_info mode_table[] = {
{ 640, 350, 0x2d },
{ 640, 480, 0x2e },
{ 800, 600, 0x30 },
{ 1024, 768, 0x38 },
{ -1, -1, -1 }
};
int code = svga_find_mode(dev, mode_table);
volatile_fb_ptr p0 = (volatile_fb_ptr)MK_PTR(regen, 0);
if ( code < 0 ) return code; /* mode not available */
code = svga_open(dev);
if ( code < 0 ) return 0;
/* Figure out whether we have an ET3000 or an ET4000 */
/* by playing with the segment register. */
outportb(0x3cd, 0x44);
*p0 = 4; /* byte 0, page 4 */
outportb(0x3cd, 0x40);
*p0 = 3; /* byte 0, page 0 */
fb_dev->info.tseng.et_model = *p0;
/* read page 0 if ET3000, */
/* page 4 if ET4000 */
return 0;
}
}
/* Set the current display page. */
private void
tseng_set_page(gx_device_svga *dev, int pn, int wnum)
{ /* The ET3000 has read page = 5:3, write page = 2:0; */
/* the ET4000 has read page = 7:4, write page = 3:0. */
int shift = dev->info.tseng.et_model;
int mask = (1 << shift) - 1;
if ( wnum ) pn <<= shift, mask <<= shift;
outportb(0x3cd, (inportb(0x3cd) & ~mask) + pn);
}